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ON THE DISTRIBUTION OF ADDITIVE ARITHMETIC
FUNCTIONS ON THE POLYNOMIAL RING

Jaehyun Ahn* and Sei-Qwon Oh**

Abstract. We give a result on the density of certain additive
arithmetic functions which count the number of restricted irre-
ducible polynomials on the polynomial ring.

1. Introduction

The investigation of density of additive functions, the so-called lo-
cal theorems in classical probabilistic number theory, was originated by
Hardy and Ramanujan [1] and is continued by Erdős, Halász [2] and oth-
ers. Especially, Halász applied the quantitative mean-value theorems in
this investigation.

Halász [2] proved the theorem that is concerned with the “local” dis-
tribution of a certain completely additive function g defined in terms
of a given set P of primes as follows: g(n) is the total number of
prime divisors p of n such that p ∈ P, with multiplicity counted. Let
E(x) =

∑
p≤x,p∈P p−1 and N(m,x) =

∑
n≤x,g(n)=m 1. We assume that

P satisfies E(x) →∞ as x →∞.

Theorem 1.1.

N(m, x) = x
Em(x)

m!
e−E(x)

(
1 + O(

|m− E(x)|
E(x)

) + O(
1√
E(x)

)
)

uniformly in m and x for δ ≤ m/E(x) ≤ 2− δ, E(x) ≥ 2, with any fixed
δ > 0.
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This conclusion refines earlier results of Kubilius [4]. Zhang [5] ex-
tended Theorem 1.1 to additive functions on additive arithmetic semi-
groups (see [6, Chapter 1]). From the above theorem, we easily have

N(m,x) ¿ x
Em(x)

m!
e−E(x), if δ ≤ m

E(x)
≤ 2− δ

uniformly for the integer m. In [3], Halász extended the above upper
bound to a larger range of m/E(x):

Theorem 1.2.

N(m, x) ¿ x
Em(x)

m!
e−E(x), if 0 ≤ m

E(x)
≤ 2− δ

In this paper, we give an analogous result for Theorem 1.2 in the
polynomial ring case. Our proof is elementary and similar to that of
Halász [3].

2. The distribution of additive arithmetic functions on the
polynomial ring

An additive arithmetical semigroup G has a countable free generating
set P of “primes” and a degree mapping ∂ : G → N ∪ {0} satisfying
∂(ab) = ∂(a)+∂(b). The counting function G(n) = #{a ∈ G, ∂(a) = n}
is assumed to satisfy

G(n) = Aqn + O

(
qn

nγ

)
,

where A > 0 and γ > 2.
For P∗ ⊂ P, let

E(k) =
∑

p∈P∗, ∂(p)≤k

q−∂(p)

and

Ω∗(a) = #{p ∈ P∗ : p | a}
(counted with multiplicity). Let N(m, k) =

∑
∂(a)=k,

Ω∗(a)=m

1 and δ be a real

number satisfying max(1
2 , 2− q) < δ < 1.
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Theorem 2.1 ([5], Theorem 5.1). There is a positive constant c9 such
that

1
G(m)

N(m, k) =
Em(k)

m!
exp{−E(k)} ·

{
1 +

√
(Γ(δ − 1

2))

(δ − 1
2)5

·O
( |m−E(k)|

E(k)
+

1√
E(k)

)

+O
(

exp
{
− c9

(
δ − 1

2
)2

∑
p∈P∗,∂(p)≤k,

∂(p) even

q−∂(p)
})}

for E(k) > (q−2+δ)3 and δ ≤ m
E(k) ≤ 2−δ. Here c9 and the O-constants

are independent of δ.

Let Fq(T ) be the rational function field over a finite field Fq. Through-
out this paper, let G be the set of monic polynomials in Fq(T ). Then
G becomes an additive arithmetic semigroup with P being monic irre-
ducible polynomials and ∂(a) being the degree of a polynomial a. Clearly
G(k) = qk. Suppose that P∗ satisfy E(x) → ∞ as x → ∞. From the
theorem 2.1, we have

N(m, k) ¿ qk Em(k)
m!

e−E(k) if δ ≤ m

E(k)
≤ 2− δ

uniformly for the integer k.
In this paper, we give an analogous result for Theorem 1.2 in the

polynomial ring case:

Theorem 2.2.

N(m, k) ¿ qk Em(k)
m!

e−E(k) if 0 ≤ m

E(k)
≤ 2− δ

uniformly for the integer k.

Proof. Let f(a) = zΩ∗(a) for a ∈ G. Then f(a) is the completely
multiplicative function on G defined by

f(p) =
{

z, if p ∈ P∗;
1, otherwise.

Following [3], we define

F (z, σ) =
∑

a∈G

f(a)
|a|σ =

∑

a∈G

zΩ∗(a)

|a|σ (z = reiθ, r ≤ 2− δ).



774 Jaehyun Ahn and Sei-Qwon Oh

This is the Dirichlet series associated to f (for example [8, section 2]).
Note that

(2.1)
∑
a∈G

Ω∗(a)=m

1
|a|σ =

∞∑

k=1

∑
∂(a)=k

Ω∗(a)=m

1
|a|σ =

∞∑

m=1

N(m, k)
qkσ

and
∑
a∈G

Ω∗(a)=m

1
|a|σ =

∑

a∈G

1
|a|σ ·

1
2πi

∫

|z|=r
zΩ∗(a)−m−1dz

=
1

2πi

∫

|z|=r

F (z, σ)
zm+1

dz.

(2.2)

Since f is multiplicative, we have

F (z, σ) =
∏

p∈P

( ∞∑

j=0

f(pj)
|p|jσ

)

=
∏

p∈P∗

( ∞∑

j=0

zj

|p|jσ
) ∏

p6∈P∗

( ∞∑

j=0

1
|p|jσ

)

=
∏

p∈P∗

( 1
1− z

|p|σ

) ∏

p6∈P∗

( 1
1− 1

|p|σ

)

= exp
( ∑

p∈P∗

∞∑

j=1

zj

jpjσ
+

∑

p6∈P∗

∞∑

j=1

1
jpjσ

)
.

As in [3], estimating

F (z, σ)
F (r, σ)

= exp
( ∑

p∈P∗

∞∑

j=1

zj − rj

jpjσ

)

we have

F (z, σ)
F (r, σ)

= exp
( ∑

p∈P∗
|p|≤x′

z − r

|p| + O(r|θ|))

= exp
(
(z − r)E(logq x′)

)
(1 + O(r|θ|))

= e(z−r)E(x) + O(er(cos θ−1)E(x)r|θ|).
Here k′ is defined by σ − 1 = 1

logq k′ and k = logq k′.
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By the same argument as in the proof of [3, Theorem], we have for
(m + 1)/E(k) ≤ 2− δ,

∑
a∈G

Ω∗(a)=m

1
|a|σ = F (r, σ)

Em(k)
m!

e−rE(k)
(
1 + O

( 1√
E(k)

))
.

Estimating as above we have

F (r, σ) = e(r−1)E(k)+O(1)k.

Combining this results with (2.1),
∞∑

u=1

N(m,u)
quσ

≤ c1
Em(k)

m!
e−E(k)k

(m + 1 ≤ (2− δ)E(x), σ − 1 =
1
x

).

If u ≤ k, then qu(σ−1) ≤ (qk)1/k = q and

(2.3)
∑

u≤k

N(m,u)
qu

≤ q
∞∑

u=1

N(m,u)
quσ

≤ c2
Em(k)

m!
e−E(k)k.

Now introducing the Mangoldt function

Λ(a) =

{
∂(P ) if a = P r

0 otherwise,

as in the [3], we have
∑

∂(a)=u
Ω∗(a)=m

∂(a) ≤
∑

P

∂(P )
(
N(m−1, u−∂(P ))+N(m,u−∂(P ))

)
+O(qu).

Now

kN(m, k) =
∑

∂(a)=k
Ω∗(a)=m

∂(a) ≤
∑

∂(a)≤k+1
Ω∗(a)=m

∂(a)

≤
∑

u≤k+1

∑

P

∂(P )
(
N(m− 1, u− ∂(P )) + N(m,u− ∂(P ))

)
+ O(qk)

=
∑

P

∂(P )
∑

u≤k+1−∂(P )

(
N(m− 1, u) + N(m,u)

)
+ O(qk)

=
∑

u≤k

(
N(m− 1, u) + N(m, u)

) ∑

∂(P )≤k+1−u

∂(P ) + O(qk).
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Since
∑

∂(P )≤k+1−u ∂(P ) ≤ c3q
k/qu (see [8, Theorem 2.2]), we have from

(2.3)

kN(m, k) ≤ c4q
k
(Em−1(k)

(m− 1)!
+

Em(k)
m!

)
e−E(k)k + O(qk).

Therefore we have

N(m, k) ≤ c5

(
qk Em(k)

m!
e−E(k) +

qk

k

)

under the condition (m+1)/E(k) ≤ 2−δ which, δ being arbitary, is the
same as that in our theorem. It remains to show that qk/k is superflous,
which is followed by the same argument as in the ring of integer case [3,
Theorem]. It completes the proof.
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