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ON THE DISTRIBUTION OF ADDITIVE ARITHMETIC
FUNCTIONS ON THE POLYNOMIAL RING

JAEHYUN AHN* AND SEI-QWON OH**

ABSTRACT. We give a result on the density of certain additive
arithmetic functions which count the number of restricted irre-
ducible polynomials on the polynomial ring.

1. Introduction

The investigation of density of additive functions, the so-called lo-
cal theorems in classical probabilistic number theory, was originated by
Hardy and Ramanujan [1] and is continued by Erdés, Haldsz [2] and oth-
ers. Especially, Haldsz applied the quantitative mean-value theorems in
this investigation.

Halész [2] proved the theorem that is concerned with the “local” dis-
tribution of a certain completely additive function ¢ defined in terms
of a given set P of primes as follows: g¢(n) is the total number of
prime divisors p of n such that p € B, with multiplicity counted. Let
E(z) = Zpgm,emp*l and N(m,z) = 32, <, (n)=m 1. We assume that
B satisfies E(x) — oo as x — o0.

THEOREM 1.1.

Nmsa) =006 E0) (1 0B 1 o)

uniformly in m and x for 6 < m/E(z) < 2-9, E(z) > 2, with any fixed
6> 0.
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This conclusion refines earlier results of Kubilius [4]. Zhang [5] ex-
tended Theorem 1.1 to additive functions on additive arithmetic semi-
groups (see [6, Chapter 1]). From the above theorem, we easily have

E™(z) g

N(m,z) < T e @) if § < @

M 9 5

uniformly for the integer m. In [3], Haldsz extended the above upper
bound to a larger range of m/E(z):

THEOREM 1.2.

E™(x) _B(z) m
N(m,z) < z e ’lfO_E(x)_z 4]

In this paper, we give an analogous result for Theorem 1.2 in the
polynomial ring case. Our proof is elementary and similar to that of
Halész [3].

2. The distribution of additive arithmetic functions on the
polynomial ring

An additive arithmetical semigroup G has a countable free generating
set P of “primes” and a degree mapping 9: G — N U {0} satisfying
d(ab) = d(a) 4+ 9(b). The counting function G(n) = #{a € G, d(a) = n}
is assumed to satisfy

— A 7
G(n) = Aq +O<n’7> ,
where A > 0 and v > 2.

For P* C P, let
E(k)= > ¢
peP*,d(p)<k
and
W(a)=#{peP :pla}
(counted with multiplicity). Let N(m,k) = > s@=«, 1 and ¢ be a real

Q*(a)=m
number satisfying max(3,2 —¢) <4 < 1.
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THEOREM 2.1 ([5], Theorem 5.1). There is a positive constant cg such
that

1 _ E™(k)
@N(m,k) = ml exp{—E(k)} -

[m — E(F)| 1
'O< E(k) +«/E(k)>

+O(exp{—69(5—%)2 Z g w )}

pEP*,0(p)<k,
d(p) even

for E(k) > (¢q—2+6)3 and § < By < 2—0. Here ¢y and the O-constants

are independent of §.

Let Fy(T') be the rational function field over a finite field F,. Through-
out this paper, let G be the set of monic polynomials in Fy(7"). Then
G becomes an additive arithmetic semigroup with P being monic irre-
ducible polynomials and d(a) being the degree of a polynomial a. Clearly
G(k) = ¢*. Suppose that P* satisfy F(z) — oo as x — oo. From the
theorem 2.1, we have

N@mk)<thmG%zE@>ﬁag

uniformly for the integer k.
In this paper, we give an analogous result for Theorem 1.2 in the
polynomial ring case:
THEOREM 2.2.
m

By =270

E"™(k
N(m, k) < q’“m(')eE(’“) if0 <

uniformly for the integer k.

Proof. Let f(a) = 22 for a € G. Then f(a) is the completely
multiplicative function on G defined by

| oz iftpePH
f(p)_{ 1

, otherwise.
Following [3], we define
f(a) z :
F(z,0) = Z lalo Z lal (z=re,r <2-9).

aceg




774 Jaehyun Ahn and Sei-Qwon Oh

This is the Dirichlet series associated to f (for example [8, section 2]).
Note that

1 > 1 2. N(m, k)
SRS S S SIS of L
a€g k=1 0(a)=k m=1
Q*(a)=m Q*(a)=m

and
1 1 1 »
O A
a€gG ‘a| aeg |a’ 27—‘-7’ |Z‘=T‘
(2.2) Q*(a)=m
1 F(z,a)d
= — 2.
21 |z\:r Zm+1
Since f is multiplicative, we have
o .
o) = (X 12)
peP 3=0 ‘p|]
o y oo
= (0w (X 50)
peP* j=0 ‘p|JU pgP*  j=0 ‘p’jff
1 1
- H ( _L) i
peEP* 7" pgp+ pl”
N =1
= exp( — — )
2t 2 2w
peP* j=1 pgP* j=1
As in [3], estimating
F(z,0) =
(X320
F(r,0) o
we have
F(z,0) Z—r
Flr.o) = exp | Z o + O(r]6]))
’ bt
p|<z’

= exp ((z —r)E(log, ")) (1 + O(r|]))
e(z—r)E(oc) —I—O(eT(COSG_l)E(x)T‘QD.

Here k' is defined by 0 — 1 = @ and k = log, k.
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By the same argument as in the proof of [3, Theorem|, we have for
(m+1)/E(k) <2-19,

> |a1]0 = F(T,G)Ezlgk)eTE(k) (1 - O(%))

a€g
Q*(a)=m

Estimating as above we have

F(T’,O') — E(T_I)E(k)—i—o(l)k.

Combining this results with (2.1),

o0

Z N(m,u) < Em('k) e~ Ek) .
— q*° m!

1
(m+1<(2-0)E(x),c —1=-).
x
Ifu< k, then qu(U_l) < (qk)l/k =q and

(2.3) Z N(m, u) < Qi N(m, u) < Em(k)e*E(k)k:.

e (A m!

u=1
Now introducing the Mangoldt function

P) ifa=P"
Aa) = {8( ) ifa

0 otherwise,

as in the [3], we have

> @) <> P) (N(m—1,u=0(P))+N(m,u—d(P))) +0(q").
0(a)=u P

Q*(a)=m

Now
EN(m,k)= Y 0a) < Y )
d(a)=k 8(a)<k+1
Q*(a)=m Q*(a)=m
< Y S aP)(N@m—1,u-0(P) + N(m,u—d(P))) +O(d")
u<k+1l P
- Yar ¥ (N(m —1,u) + N(m, u)) +O(¢")
P u<k+1-0(P)

= Y (Nm-tLw+Nmw) Y aP)+0).

u<k O(P)<k+1—u
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Since 3y py<pr1-u O(P) < 3" /q* (see [8, Theorem 2.2]), we have from

(2.3)

E™Yk)  E™(k)
(m—1)! m!

EN(m, k) < C4qk< )e_E(k)k:—l—O(qk).

Therefore we have

m k
N(m. k) < o5 (¢ EoB) o) o 00

under the condition (m+1)/E(k) < 2— ¢ which, ¢ being arbitary, is the
same as that in our theorem. It remains to show that ¢* /k is superflous,
which is followed by the same argument as in the ring of integer case [3,

Theorem]|. It completes the proof. O
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